3.5.36 \(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx\) [436]

3.5.36.1 Optimal result
3.5.36.2 Mathematica [A] (verified)
3.5.36.3 Rubi [A] (verified)
3.5.36.4 Maple [B] (verified)
3.5.36.5 Fricas [A] (verification not implemented)
3.5.36.6 Sympy [F(-1)]
3.5.36.7 Maxima [B] (verification not implemented)
3.5.36.8 Giac [F]
3.5.36.9 Mupad [F(-1)]

3.5.36.1 Optimal result

Integrand size = 25, antiderivative size = 157 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\frac {19 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {9 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

output
-1/4*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(5/2)-9/16*sin(d*x+c)/ 
a/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+19/32*arctanh(1/2*sin(d*x+c)*a 
^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*s 
ec(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)
 
3.5.36.2 Mathematica [A] (verified)

Time = 0.93 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.07 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=-\frac {\sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \left (9 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+38 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x)+13 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \sin (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]
 
output
-1/16*(Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*(9*Sqrt[1 - Sec[c + d*x]]*Sec 
[c + d*x]^(3/2) + 38*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - 
Sec[c + d*x]]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^2 + 13*Sqrt[-((-1 + Sec[c + 
 d*x])*Sec[c + d*x])])*Sin[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec 
[c + d*x]))^(5/2))
 
3.5.36.3 Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4752, 3042, 4304, 27, 3042, 4500, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x)}}{(\sec (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int -\frac {\sqrt {\sec (c+d x)} (7 a-2 a \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x)} (7 a-2 a \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (7 a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 4500

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {19}{4} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {19}{4} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {19 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 d}-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {19 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

input
Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/4*(Sec[c + d*x]^(3/2)*Sin[c + d* 
x])/(d*(a + a*Sec[c + d*x])^(5/2)) + ((19*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d* 
x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*Sqrt[a]* 
d) - (9*a*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2) 
))/(8*a^2))
 

3.5.36.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4500
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] + Simp[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1))   Int[(a + b*Csc[e + 
 f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n} 
, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && LeQ[ 
m, -1]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.36.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(276\) vs. \(2(128)=256\).

Time = 1.56 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.76

method result size
default \(\frac {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (-2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+11 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+19 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{32 d \,a^{3} \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}}\, \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\) \(277\)

input
int(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/32/d/a^3*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-2*a/((1-cos(d*x+c))^2*csc(d 
*x+c)^2-1))^(1/2)*(-2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(1-cos(d*x+ 
c))^3*csc(d*x+c)^3+11*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c 
)+csc(d*x+c))+19*arctan(1/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d 
*x+c)+csc(d*x+c))))/(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2* 
csc(d*x+c)^2+1))^(1/2)/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)
 
3.5.36.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.60 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (13 \, \cos \left (d x + c\right ) + 9\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (13 \, \cos \left (d x + c\right ) + 9\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
[1/64*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1) 
*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a 
)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*sqrt((a*cos(d*x + c) + a)/cos 
(d*x + c))*(13*cos(d*x + c) + 9)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*c 
os(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1 
/32*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*s 
qrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sq 
rt(cos(d*x + c))/(a*sin(d*x + c))) + 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*(13*cos(d*x + c) + 9)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x 
 + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]
 
3.5.36.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*sec(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.5.36.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3049 vs. \(2 (128) = 256\).

Time = 0.64 (sec) , antiderivative size = 3049, normalized size of antiderivative = 19.42 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
1/32*(19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2* 
d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 
2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 1 
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1 
/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))* 
cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c 
)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d 
*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(log 
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
+ 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x 
 + 1/2*c) + 1))*cos(d*x + c)^2 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2* 
d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 
+ sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^2 
 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d* 
x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2* 
sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2 
*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*si 
n(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^ 
2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*...
 
3.5.36.8 Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate(1/((a*sec(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)
 
3.5.36.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)), x)